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Abstract

A comparison between the full Newton-type optimization NL2SNO, the Levenberg–Marquardt method with the model-trust region
modification, and the simplex algorithm is made in the context of the iterative fitting of EPR spectra. EPR lineshape simulations are
based on the stochastic Liouville equation (SLE), with an anisotropic diffusion tensor and an anisotropic restraining potential describing
the motional amplitude of the spin label. The simplex algorithm was found to be the most reliable, and an approach—incorporating both
NL2SNO as well as the downhill simplex methods—is proposed as a strategy-of-choice.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The emergence of applications in the study of biological
membranes and structural biology, for both NMR and
EPR, have significantly increased the demand for robust,
accurate, and efficient programs for the analysis of experi-
mental data. A suitable minimization scheme can be used
to elicit both structural and dynamic information from
the spectroscopic lineshapes. Iterative analysis of spectra
is based on: (a) a suitable physical model to simulate the
theoretical spectrum, (b) an algorithm that improves a
given set of model parameters, based on a suitable criterion
such as minimizing v2 [1], and (c) a measure for the
goodness of fit.

In this report, the simulation of EPR spectra involves
the solution of the stochastic Liouville equation (SLE) of
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motion [2]. The SLE is of special importance in the slow-
motion regime of the spin label and provides a versatile
means for implementing detailed dynamical models that in-
clude fully anisotropic rates and amplitudes of motion [3].
SLE-based simulations are CPU-intensive, and—in all but
the simplest cases—remain a time-consuming step in the
analysis of experimental spectra. This is especially true at
high magnetic fields [4,5], which necessitates finding an effi-
cient and robust strategy that reduces the number of itera-
tions needed for an acceptable fit.

Some of the more well-known parameter optimization
algorithms are the downhill simplex [6], Powell [7], evolu-
tionary Monte Carlo [8], and conjugate gradients methods
[9], as well as Newton-type methods such as Gauss–New-
ton [1], Levenberg–Marquardt [10,11], and Levenberg–
Marquardt with the model-trust-region modification [12].
A number of these have been applied to various curve fit-
ting problems involving EPR spectra: simplex in powder
patterns and orientational distribution of rigid samples
[13,14], Levenberg–Marquardt for dynamically averaged
line shapes [15], and simulations in the slow motional
regime [16]. At the end of an optimization it is desirable
to be able to test for the goodness of fit, a number of such
tests is available, for example the reduced v2 = v2/(n � p),
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with n the number of data points and p the number of fitted
parameters, which for a fit in which the only deviation be-
tween model and data is Gaussian noise, is distributed
about unity with a standard deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� pÞ

p
.

Newton-type methods, which are the most popular in
EPR spectral analysis, necessitate the calculation of first
(and approximations of second) derivatives of v2 with re-
spect to fitting parameters. Inaccuracies in the calculation
of derivatives may lead to inefficient convergence requiring
a large number of individual spectral simulations, as well as
inaccuracies in the estimate of parameter uncertainties.
SLE-based simulations are particularly prone to such inac-
curacies when an insufficient basis set is used (see below)
and/or in the presence of low signal to noise. Although
increasing the step size in the calculation of derivatives
may partially solve this problem, it is desirable to find a ro-
bust algorithm that is insensitive towards it.

Moreover, existing interactive programs for EPR
spectral analysis provide little control over the detailed
configuration of the optimization algorithms themselves,
for example the step-size taken for (or the method of)
calculating derivatives numerically, or the values for
various converge criteria. We observe that a user-driven
balance between control and automation of both spectral
simulation and optimization would be invaluable to the
community.

In this work, we introduced the adaptive full-Newton
type algorithm NL2SNO [17] to EPR line-shape analysis
and compared it to the model trust region modification
of the Levenberg–Marquardt method (MTRMLM) and
the downhill simplex algorithm (SIMPLEX). The latter
can be categorized as a direct method since it does not de-
pend on the calculation of derivatives. In addition, the
SLE-based simulation, NL2SNO and SIMPLEX have
been implemented in a unified computer program with an
easy-to-use interface that runs on a conventional PC-work-
station and is made available to the community.

We found that NL2SNO offers significant advantages
over MTRMLM in terms of both efficiency and accuracy
of parameter estimates. Surprisingly, SIMPLEX is signifi-
cantly more efficient in locating a global minimum than
either of the above Newton-type methods. However, SIM-
PLEX does not allow for a precise estimation of solution
uncertainties in a straight-forward way (commonly a boot-
strap method is used). We advocate a combined method in
which SIMPLEX is used to identify the general region of
the solution, and NL2SNO is used to refine parameter esti-
mates and calculate fitting statistics.

2. Methods

2.1. EPR-lineshape simulation

The physical model for the EPR simulations we used
here is based on the work of Freed and co-workers [3,18].
The model spans a wide range of motional correlation
times for the spin label, and can also account for the label’s
microscopic order but macroscopic disorder (MOMD).
The MOMD model assumes microscopic molecular order-
ing with respect to a local director that is itself randomly
oriented. This model is particularly useful for biological
samples where motion occurs in a locally ordered environ-
ment but the sample is macroscopically disordered, e.g.,
membrane dispersions, protein surfaces, or DNA [19].
For a detailed description of the stochastic Liouville calcu-
lation we refer the reader to Schneider and Freed [20].

The SLE used to carry out a slow-motional calculation
is constructed in a basis set consisting of spin functions that
represent the magnetic resonance properties, and general-
ized spherical harmonic functions used to represent the
rotational diffusion of the probe molecule. The SLE basis
functions are specified by the quantum numbers L, K,
and M. The slow-motion EPR calculation utilizes trunca-
tion parameters, Lemx, Lomx, Kmn, Kmx, Mmn, and Mmx,
that determine the maximum even L, maximum odd L,
minimum K, maximum K, minimum M, and maximum
M allowed, respectively [4]. When these parameters are
set to the minimum necessary for acceptable convergence
of the calculated spectrum, they are referred to as a mini-
mum truncation set (MTS). Simulated EPR lineshapes that
include molecular motion are thus approximations, since
they use a finite number of component functions.

Since the CPU-time needed for a simulation increases
with the size of the basis set, it is desirable to find the
MTS [4,21]. This has implications when performing optimi-
zations with Newton-type methods since they depend on
the evaluation of first and second order partial derivatives
of the simulated model spectra w.r.t. fitting parameters (see
below), both of which are sensitive to the details of the line-
shape. An insufficient basis set or a restricted number of
orientations in the MOMD model causes oscillations (ring-
ing) in the high field portion of the EPR spectrum (Fig. 1).
There is no fixed number for the minimum size of a basis
set, the proper size increases with slower motions of the
spin label. This is important in the case of fitting for
motional parameters, since the optimization algorithm
may drive their values to a region where the basis set is
insufficient, introducing ringing.

2.2. Newton-type optimization

MTRMLM and NL2SNO fall under the broad category
of Newton-type optimization methods. The optimization
problem is to minimize v2 the sum of squared residuals be-
tween the simulated f(x) and the experimental h spectra
containing N data points, for a given parameter vector x
of length M. In case of the Newton-type methods of non-
linear least squares, the current estimate x0 is taken and a
refined estimate x+ is calculated according to the formula
[22,23],

xþ ¼ x0 þ a�1ðx0Þ � bðx0Þ; ð1Þ

where the ith component of b is given by,



Fig. 1. Oscillations due to an insufficient choice of basis set. The
simulations shown are based on the SLE calculation at X-band at a
center field of 3500 Gauss and a sweep width of 100 Gauss, by applying
increasingly severe truncation set restrictions detailed in the table (A–D).
For symbol meanings see Table 1. The insufficient-basis-set pathology can
already be observed in (B) and gets more severe as the basis set is
increasingly restricted as shown in (C and D) (compare the spectrum
section in the gray box (A) to that in (C)). Other parameters are
gx = 2.009, gy = 2.005, gz = 2.002, ax = ay = 7.5 Gauss, az = 35.5 Gauss,
Riso = 6.1, and line-width broadening = 0.6 Gauss, Kmn, Mmx, and Mmn

were 0, 2, and 0, respectively.
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biðx0Þ ¼ �
1

2

ov2ðx0Þ
oxi

¼
XN

k¼1
ðhk � fkðx0ÞÞ

ofkðx0Þ
oxi

ð2Þ

with i = 1,2, . . . ,M, and assuming unit standard deviation
for all measured data points. a, which is one half of the
Hessian matrix, has components aij given by,

aijðx0Þ ¼
1

2

o
2v2ðx0Þ
oxioxj

¼
XN

k¼1

ofkðx0Þ
oxi

ofkðx0Þ
oxj
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ð3Þ

so a can be written as a sum of two terms

aðx0Þ ¼ Jðx0Þ � JTðx0Þ þ Sðx0Þ; ð4Þ
where J(x) is the Jacobian matrix of f(x), and S(x) a matrix
that contains all second derivative information. The itera-
tive solution of Eq. (1) leads to better estimates x until a
set of parameters (x*) is found that minimizes v2 according
to some termination criterion (see below).

In all but the simplest cases, calculating S(x) is compu-
tationally impractical. Newton-type algorithms differ in
their method of treating/approximating S(x). For instance,
in the Gauss–Newton method, S(x) is ignored altogether.
In Levenberg–Marquardt and MTRMLM, S(x)is replaced
by a diagonal linear scaling matrix (k Æ diag(J(x0) Æ JT(x0))),
which makes the algorithm a compromise between Gauss–
Newton and steepest descent because the magnitude of the
scaling parameter k determines the diagonal dominance of
a. In such cases a depends on first derivative information
only. This is equivalent to assuming a random distribution
of errors which renders the contribution of second deriva-
tives negligible. The success of the Gauss–Newton and
Levenberg–Marquardt methods would clearly depend on
the importance of S(x).

In our new program we chose to implement the Newton-
type algorithm NL2SNO [17]. It adaptively decides on the
form of the approximation to the Hessian: Gauss–Newton-
like, MTRMLM-like, or by using a so-called secant
approximation of S(x). Secant methods are those that build
increasingly better approximations of derivative informa-
tion based on the history of iterations. For the detailed for-
mula of the secant Hessian approximation in NL2SNO the
reader is referred to the original publication [17]. The pro-
cedure for switching models is based on the comparison of
the actual reduction in function value (regardless which
model was used) to the reduction predicted by each individ-
ual model. The model with the best match in function
reduction prediction is used in the next step. This adaptive
modeling causes NL2SNO to use Gauss–Newton or
MTRMLM steps in the beginning until it builds up enough
second-order information (i.e., better approximations of
S(x)), after which the secant Hessian approximation can
be used.

Given g(x) as the function to be minimized, convergence
criteria in the implementation for NL2SNO were: (1) x-
convergence; occurs when the current iterate x0 is within
a prescribed tolerance ex of a strong local minimizer x*

(i.e., close to the solution which of course may still repre-
sent a local minimum), in which case the following criteria
are satisfied: (a) the scaled relative difference (SRD =
max(|x0 � x�|)/max(|x0| + |x�|)) between the current scaled
step x0 and the previous one x� is smaller than ex, (b) the
current step yields no more than twice the predicted func-
tion decrease, and (c) the Hessian is positive definite, (2) rel-
ative function convergence; occurs if the current function
value g(x) is close to its value g(x*) at a strong local mini-
mizer x*, in that case (a) the Hessian is positive definite,
(b) the current step yields no more than twice the predicted
function decrease, and (c) g(x0) � g(x*) < eRg(x0), where eR

is the relative function convergence tolerance, (3) absolute
function convergence; occurs if the condition g(x0) < eA is
satisfied, where eA is the absolute function convergence tol-
erance, this is for the rare case when x* is the zero vector
and g(x*) = 0, since x-convergence and relative function
convergence tests do not work in this case, (4) singular con-
vergence; occurs when the least-squares Hessian is singular
or nearly so, which signifies that the model is over-specified,
(5) false convergence (convergence to a non-critical point);
is detected when (a) none of the previous convergence crite-
ria is satisfied, (b) the algorithm is detecting convergence in
the sense that the SRD is smaller than a prescribed toler-
ance eF, (this is similar to x-convergence, but eF should al-
ways be smaller that ex), and (c) the current step yields more
than twice the predicted function decrease. For a more
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detailed explanation of convergence criteria the reader is re-
ferred to [17].

For the implementation of MTRMLM the convergence
criteria were: (1) relative function convergence (as above),
(2) x-tolerance (as above) and (3) a convergence test for
the gradient of g(x0) w.r.t. the fitting parameters, with its
respective tolerance eG.

2.3. Downhill simplex

SIMPLEX (also called amoeba) due to Nelder and
Mead [6] is also iterative. It does not include an implicit
model for the derivatives, and so only depends on function
values. This makes it particularly suitable for cases where
the calculation of the derivatives might be influenced by
noise or other spectral pathologies such as an insufficient
basis set or, as can be the case with MOMD calculations,
an insufficient number of orientations.

The coordinates of each vertex of the simplex are the fit-
ting parameters, the value associated with an individual
vertex is v2 corresponding to the parameter set defining
the coordinates. The algorithm proceeds by attempting to
move the vertices of the simplex in parameter space into
a minimum of v2. At each step it either reflects the vertex
associated with the highest v2 value through the (n � 1)-di-
mensional plane defined by the remaining points (n being
the number of simplex vertices), reflects and expands to
be able to take larger steps, contracts to shrink the overall
volume after reaching a valley floor, or shrinks (multiple
contractions). Four parameters, that control the respective
behaviours of the simplex, must be specified to define a
complete Nelder–Mead method, a > 1, b > 1, 0 < c < 1,
and 0 < r < 1, where b > a. For instance a reflection point
is calculated as xr ¼ �xþ að�x� xHiÞ, where xHi is the vertex
associated with the highest x, and �x is the centroid of the
other points. The other parameters enter the algorithm in
a similar way to scale the step sizes taken by the corre-
sponding action of the simplex. The behavior of the sim-
plex during the course of a minimization is that of an
amoeba crawling around parameter space, creeping down
valleys and shrinking to get to the very bottom of narrow
valleys or through the eye of a needle.

The termination criterion of the original algorithm was
based on a relative tolerance computed as the fractional
range from highest to lowest function values associated
with the vertices of the simplex. As in Fajer et al. [13], we
have extended the criteria to include an absolute v2 toler-
ance (equivalent to the absolute function convergence tol-
erance above), a maximum number of iterations and a
minimum step-size for each parameter to make sure that
the steps are still within the resolution of the search.

2.4. WinMOMD

As mentioned above, we have incorporated the SLE-spec-
tral simulation program of Freed and coworkers together
with the optimization algorithms NL2SNO and SIMPLEX
in the unified user-friendly program called WinMOMD that
runs on a conventional PC-workstation. The simulation of a
single spectrum is based on the original FORTRAN code at
double precision, and has been wrapped with C++ for calcu-
lating MOMD spectra and for communication with the
C++-based interface. The SIMPLEX algorithm has been
programmed in C and NL2SNO in FORTRAN, both at
double precision. All code was compiled using Microsoft
Visual C++ (and Digital FORTRAN). WinMOMD allows
control over all settings of the spectral simulation, and opti-
mization engines. The user may choose between SIMPLEX
or NL2SNO. For automation, a Monte Carlo shell has
been added that enables performing a large number of min-
imizations in succession with starting values chosen random-
ly within parameter-prespecified bounds. A download URL
for WinMOMD is http://www.chem.neu.edu/d.budil/
webfolder/WinMOMD.htm or http://fajerpc.magnet.fsu.edu/
Programs/WinMOMD/WinMOMD.html.

3. Results

The efficiencies of MTRMLM, NL2SNO, and SIM-
PLEX were compared on simulated test spectra generated
with different magnitudes and types of noise. The following
implementations were used:

(1) NLSL: It is an implementation of MTRMLM with
the addition of a separation of variables [4].

(2) NLSL(s): The same as NLSL but with the spectral
shifting option enabled. This feature includes the
trace of the g-tensor as an additional separable
parameter to be optimized. Shifting is useful in cases
where either the spectrometer frequency or the abso-
lute magnetic field are not known to sufficient accura-
cy. We include it as a separate method to test whether
shifting has detrimental effects on the efficiency and
accuracy of the spectral analysis under conditions
of low S/N.

(3) NL2SNO: It is an implementation of NL2SNO
[17,22].

(4) SIMPLEX: It is based on SIMPLEX [6]. Our imple-
mentation is modified for termination criteria as
described above [13].

3.1. Test cases

Four simulated test cases are given in Fig. 2. The spec-
tra, which were normalized to the double integral, were
simulated with the rotational diffusion rates, R^ and Ri
(perpendicular and parallel to the principal axes of diffu-
sion of the probe) with the values log10(R^) = 7.28 and
log10(Ri) = 8.13. In case 1, normally distributed noise was
added to the simulated spectrum to obtain a signal to noise
ratio (S/N) of 27. In case 2, uniformly distributed noise was
added, and in case 3, Gaussian noise with S/N = 6. Case 4
was simulated as case 1 above except that before addition

http://www.chem.neu.edu/d.budil/webfolder/WinMOMD.htm
http://www.chem.neu.edu/d.budil/webfolder/WinMOMD.htm
http://fajerpc.magnet.fsuedu/Programs/WinMOMD/WinMOMD.html
http://fajerpc.magnet.fsuedu/Programs/WinMOMD/WinMOMD.html
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Fig. 2. Simulated spectra to serve as test cases for comparing the various
optimization algorithms. The original spectrum was simulated at X-band
(at a center field of 3400 Gauss and a sweep width of 100 Gauss) with
log10(R^) and log10(Ri) of 7.28 and 8.13, respectively. Case 1: normally
distributed noise with S/N = 27. Case 2: uniformly distributed noise with
S/N = 27. Case 3: normally distributed noise with S/N = 6. Case 4: the
model does not fit the data anymore. It uses a different physical model
than that in the simulations. All other values are given in Table 1.
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of noise the spectrum was artificially stretched horizontally
by 2%. Thus case 4 does not fit the model anymore. This
was done to test the optimization methods in the large
residual case. NL2SNO was specifically developed to meet
the need for a nonlinear least-squares algorithm which
would be reliable in the presence of large residuals, at the
minimum, but would still be more efficient than the vari-
able metric methods such as Davidon–Fletcher–Powell
which are intended for general function minimization.

The spectral parameters which were kept constant dur-
ing fitting are shown in Table 1. Here, gx, gy, and gz are
the Cartesian components of the g-tensor for the electronic
Zeeman interaction, ax, ay, and az are the components of
the electron/nuclear hyperfine tensor in Gauss. wx, wy,
and wz are principal values of the orientation-dependent
Lorentzian inhomogeneous line broadening tensor, gib0

specifies the inhomogeneous (Gaussian) broadening that
is added to the spectrum after the calculation of the slow-
motional lineshape.

All values for convergence tolerances used for our
minimizations using NLSL, NL2SNO, and SIMPLEX
are listed in Table 2. Convergence tolerances for NLSL

and NLSL(s) were identical.
Other than termination criteria, the SIMPLEX settings

were kept at their nearly universal choices a = 1, b = 2,
and c = r = 0.5 [23]. NL2SNO had not been used for this
type of calculation before, we searched for reasonable set-
tings for forward difference step size in the Jacobian calcu-
lation (DLTFDJ) and suitable convergence tolerances, that
minimized the number of function evaluations needed to
reach a minimum without encountering false or singular
convergence. NL2SNO has many settings that control the
behaviour of the algorithm, all of which were kept at their
default values except for DLTFDJ which was set to
5 · 10�3. Both the NLSL and NLSL(s) implementations
were introduced in Budil et al. [4]. NL2SNO and SIM-
PLEX were implemented in WinMOMD as stated above.

Random starting guesses for all tests were generated by a
uniform sampling within prescribed parameter intervals for
log10(R^) and log10(Ri); 6(slow motion) < log10(R) < 9(fast
motion). For consistency, the same starting parameters
were used for all the Newton-based calculations.

Figs. 3–5 show our results when comparing the four
algorithms for the cases considered in Fig. 2. A total of
100 optimizations, each starting with random guesses, were
performed on each test case. Fig. 3 shows the number of
optimization runs that gave v2 values within 5% of the low-
est v2. This is a test for how consistent the optimization
algorithms are in finding close minima given a range of
starting values. For the Newton algorithms, none of the fits
within those 5% terminated with false convergence (for
NL2SNO) or absolute function convergence, which is fur-
ther assurance that we have found suitable settings for
NL2SNO, NLSL, and NLSL(s). SIMPLEX has shown a
clear superiority in its ability to find the same (low) mini-
mum repeatedly. On average 94% of SIMPLEX minimiza-
tions resulted in a correct answer as compared to 62% for
NL2SNO and 52% for NLSL(s) and NLSL. Importantly,
the trend was independent of the noise level; case 3 has 4-
times more noise yet the efficiency of finding a minimum
was the same as for case 1.

The real price of any fitting method is the CPU-time
needed to perform a successful optimization. In the EPR
case the slowest step is the lineshape simulation, thus the
number of simulations (function calls to the simulation
routine) gives an accurate estimate of the relative length
of optimization. Fig. 4 shows a comparison of the number
of function calls that are needed to reach a (any) minimum.
Here, we see that both SIMPLEX and NL2SNO outper-
form NLSL(s) and NLSL, with SIMPLEX consistently
being the fastest. Thirty-three spectral simulations were
needed on average for SIMPLEX, 42 for NL2SNO com-
pared to 93 for NLSL. This is a factor of 3 in the number
of simulations, which shows a significant practical gain
when using SIMPLEX. For NLSL(s) the extremely low
S/N of case 3 appears to be detrimental to its performance,
compared to cases 1 and 2. The large residual case (case 4),
shows that NL2SNO is indeed more robust, compared to



Table 1
Non-fitting variables for the simulation

g-tensor
gx 2.009 Max. even L quantum number Lemx 10
gy 2.006 Max. odd L quantum number Lomx 9
gz 2.002 Min. K quantum number in basis set Kmn 0

Hyperfine tensor
ax 5 Max. K quantum number in basis set Kmx 8
ay 5.5 Min. M quantum number in basis set Mmn 0
az 33 Max. M quantum number in basis set Mmx 2

Gaussian inhomogenous broadening
gib0 1.0 Lorenzian linewidth broadening wx,wy,wz 0, 0, 0

Table 2
Termination criteria and tolerances

NLSL and NLSL(s) NL2SNO SIMPLEX

ex 1.0 · 10�4 ex 5.3 · 10�4 eA 1.0 · 10�10

eA 1.0 · 10�4 eA 1.0 · 10�10 eHL
c 100

eG 1.0 · 10�6 eR 1.0 · 10�6 — —
— — eF 2.8 · 10�15 — —
MXFUNa 300 MXFUNa 300 MXFUNa 200
MXITERb 150 MXITERb 150 — —

a Maximum number of function evaluations.
b Maximum number of fitting iterations.
c Fraction of parameter step size below which iterations terminate.
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NLSL and NLSL(s), when using a model that is not cor-
rect. SIMPLEX appears to also be unaffected by slight
inconsistencies in the model.

The mark of a successful optimization is its accuracy.
Fig. 5 shows the relative accuracy of the different algo-

rithms in the form of
ðv2�v2

trueÞ
v2

true
� 100, the deviation of the

minimum value found for v2 for each algorithm from
v2

true (the v2 obtained by using the original values of fitting
parameters). Also plotted is the deviation % of log10(R^)
and log10(Ri) at that minimum, from their original values
before the addition of noise. SIMPLEX, NL2SNO, and
NLSL(s) find an almost identical minimum in all cases
(for v2, log10(R^) as well as for log10(Ri)). However, except
for case 3, NLSL is less reliable. For the same number of
attempts as the other three methods, NLSL did not find
the correct global minimum. As expected with the increase
in noise, the ability of the optimization to resolve log10(Ri)
is diminished, to the extent that in case 3 no reliable infor-
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Fig. 5. Comparison of the four algorithms for the cases given in Fig. 1 in
terms of the % deviation of the best (lowest v2) from the true minimum v2

value, and the average deviation % of the corresponding values of
log10(R^) and log10(Ri) from their true values 7.28 and 8.13, respectively.
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mation regarding Ri can be obtained. NLSL has done
poorly on the determination of Ri in all cases. R^, which
is determined by the most prominent feature in the first
derivative spectra, was successfully found in all cases.

4. Discussion

A comparison of four iterative approaches to the analy-
sis of EPR spectra in the slow-motion regime was per-
formed with the purpose of finding an efficient and
accurate strategy. The comparison focused on efficiency,
reproducibility and accuracy. As a test, four different spec-
tra with varying S/N ratios, types of noise, and a non-
random deviation were used to approximate various
experimental conditions. The optimal strategy is to use
SIMPLEX, to reproducibly approach a global minimum,
followed by NL2SNO for refinement of the parameter fit
and the calculation of the relevant statistics. Automated
repetition using random starting values (Monte Carlo) is
used to sample full parameter space.

Consistent with the literature, the Newton-based meth-
ods, which do well when starting close to the minimum
[24], have shown a general high sensitivity towards initial
values, which would explain their lower percentage of suc-
cessful fits. Still, NL2SNO seems less sensitive to starting
values than NLSL and NLSL(s), as would be expected,
since it starts out with a Gauss–Newton model, which is
known to have better initial convergence.

SIMPLEX clearly outperformed both NL2SNO and the
MTRMLM-based implementations with regards to the
success rate of finding a correct solution as well as requir-
ing fewer time-consuming spectral simulations. SIMPLEX
has been used to find the orientational distribution and
magnetic tensors before [13,24], however, not the more
complex motionally narrowed EPR spectra.

In particular we stress that SIMPLEX, which is tradi-
tionally known for its robustness but not for its efficiency,
has done surprisingly well on the number of function eval-
uations (Fig. 4) as compared to NLSL, NLSL(s), and
NL2SNO. This could be explained by inaccurate calcula-
tions of the Hessian for the gradient-dependent techniques,
especially in the presence of noise, which lies in contrast to
SIMPLEX where no gradient information is needed. Inac-
curacies of the Hessian do not generally affect the final val-
ues of the fitted parameters, but only the iterative route
that is taken to reach the minimum, hence the advantage
of SIMPLEX in the number of function evaluations. This
conclusion is consistent with the results in Fig. 5, where it is
shown that NL2SNO as well as SIMPLEX reach a global
minimum (albeit at different rates). Another possible
source of inefficiencies in the gradient-based methods is
their use of the model trust region. Eventhough the trust
region assures convergence, it can significantly hinder the
optimization algorithm from approaching the minimum
in a small number of function evaluations because of the
small the step size.

In summary, we propose a method where Monte Carlo/
SIMPLEX is used to approach the global minimum quick-
ly and NL2SNO subsequently refines the found parameter
values and is used to obtain necessary statistics, such as
inference regions and parameter error estimates.
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